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Abstract We prove the hydrodynamic limit for a particle system in which particles may
have different velocities. We assume that we have two infinite reservoirs of particles at the
boundary: this is the so-called boundary driven process. The dynamics we considered con-
sists of a weakly asymmetric simple exclusion process with collision among particles having
different velocities.

Keywords Hydrodynamic limit · Hydrodynamic equation · Markov processes · Exclusion
processes

1 Introduction

Interacting particle systems have been the subject of intense studies during the last 30 years
due to the fact that, in one hand, they present many of the collective features that are found
in real physical systems, and, in the other hand they are, up to some extent, mathemati-
cally tractable. Their study has led in many cases to a more detailed understanding of the
microscopic mechanisms behind those collective phenomena. We refer to [14] for further
references, and to [5] for recent results.

Since their introduction by Spitzer [21], the simple exclusion process and the zero-range
process have been among the most studied interacting particles systems, and they have
served as a test field for new mathematical and physical ideas.

In the last years there has been considerable progress in understanding stationary non
equilibrium states: diffusive systems in contact with different reservoirs at the boundary
imposing a gradient on the conserved quantities of the system. In these systems there is a
flow of matter through the system and the dynamics is not reversible. The main difference
with respect to equilibrium (reversible) states is the following. In equilibrium, the invariant
measure, which determines the thermodynamic properties, is given for free by the Gibbs
distribution specified by the Hamiltonian. On the contrary, in non equilibrium states the
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construction of the stationary state requires the solution of a dynamical problem. One of
the most striking typical property of these systems is the presence of long-range correla-
tions. For the symmetric simple exclusion this was already shown in a pioneering paper by
Spohn [22]. We refer to [4, 7] for two recent reviews on this topic.

The hydrodynamic behavior of the one-dimensional boundary driven exclusion process
was studied by [9, 10] and [15]. Also, Landim, Olla and Volchan [17] considered the behav-
ior of a tagged particle in a one-dimensional nearest-neighbor symmetric exclusion process
under the action of an external constant, and made connections between the behavior of a
tagged particle in this situation and a process with infinite reservoirs.

We consider a stationary non-equilibrium state, whose non-equilibrium is due to external
fields and/or different chemical potentials at the boundaries, in which there is a flow of
physical quantities, such as heat, electric charge, or chemical substances, across the system.
The hydrodynamic behavior for this kind of processes in any dimension has been solved
by [9, 10]. Nevertheless, they have solved this problem only for the case where the unique
thermodynamic observable quantity is the empirical density.

Our goal is to extend their results to the situation when there are several thermodynamic
variables: density and momentum. We show that the system can be described by a hydrody-
namic equation: fix a macroscopic time interval [0, T ], and consider the dynamical behavior
of the empirical density and momentum over such an interval. The law of large numbers for
the empirical density and momentum is then called hydrodynamic limit and, in the context
of the diffusive scaling limit here considered, is given by a system of parabolic evolution
equations which is called hydrodynamic equation. Once the hydrodynamic limit for this
model is rigorously established, a reasonable goal is to find an explicit connection between
the thermodynamic potentials and the dynamical macroscopic properties like transport co-
efficients. The study of large deviations provides such a connection. The dynamical large
deviation for boundary driven exclusion processes in any dimension with one conserved
quantity has been recently proved in [11].

The dynamical large deviations for the model with many conserved quantities is stud-
ied in [12], and the hydrodynamic limit obtained in this article is important for such large
deviations.

Let the set of possible velocities, V , be a finite subset of R
d , and for a point x =

(x1, . . . , xd) ∈ R
d , let x̃ = (x2, . . . , xd). The model which we will study can be infor-

mally described as follows: fix a velocity v ∈ V , an integer N ≥ 1, and boundary densities
0 < αv(·) < 1 and 0 < βv(·) < 1; at any given time, each site of the set {1, . . . ,N − 1} ×
{0, . . . ,N − 1}d−1 is either empty or occupied by one particle at velocity v. In the bulk,
each particle attempts to jump at any of its neighbors at the same velocity, with a weakly
asymmetric rate. To respect the exclusion rule, the particle jumps only if the target site at
the same velocity v is empty; otherwise nothing happens. At the boundary, sites with first
coordinates given by 1 or N − 1 have particles being created or removed in such a way that
the local densities are αv(x̃) and βv(x̃): at rate αv(x̃/N) a particle is created at {1} × {x̃}
if the site is empty, and at rate 1 − αv(x̃) the particle at {1} × {x̃} is removed if the site is
occupied, and at rate βv(x̃) a particle is created at {N − 1} × {x̃} if the site is empty, and at
rate 1 − βv(x̃) the particle at {N − 1} × {x̃} is removed if the site is occupied. Superposed
to this dynamics, there is a collision process which exchange velocities of particles in the
same site in a way that momentum is conserved.

Similar models have been studied by [1, 8, 20]. In fact, the model we consider here
is based on the model of Esposito et al. [8] which was used to derive the Navier-Stokes
equation. It is also noteworthy that the derivation of hydrodynamic limits and macroscopic
fluctuation theory for a system with two conserved quantities have been studied in [3].
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Under diffusive time scaling, assuming local equilibrium, it is not difficult to show that
the evolution of the thermodynamic quantities is described by the parabolic system of equa-
tions

∂t (ρ,p) +
∑

v∈V

ṽ
[
v · ∇F(ρ,p)

] = 1

2
�(ρ,p), (1.1)

where ṽ = (1, v1, . . . , vd), ρ stands for the density and p = (p1, . . . , pd) for the momentum.
F is a thermodynamical quantity determined by the ergodic properties of the dynamics.

Therefore, the purpose of this article is to define an interacting particle system whose
macroscopic density profile evolves according to the partial differential equation given by
(1.1) with initial condition

(ρ,p)(0, ·) = (ρ0,p0)(·) and (ρ,p)(t, x) = (ρ,p)b(x), x ∈ ∂D,

with D being a suitable domain, and the equality on the boundary being on the trace sense.
This equation derives from the underlying stochastic dynamics through an appropriate

scaling limit in which the microscopic time and space coordinates are rescaled diffusively.
The hydrodynamic equation (1.1) thus represents the law of large numbers for the empirical
density and momentum of the stochastic lattice gas. The convergence has to be understood
in probability with respect to the law of the stochastic lattice gas. Finally, the initial condi-
tion for (1.1) depends on the initial distribution of particles. Of course many microscopic
configurations give rise to the same initial condition (ρ0,p0)(·).

The article is organized as follows: in Sect. 2 we establish the notation and state the
main results of the article; in Sect. 3, we prove the hydrodynamic limit for the particle sys-
tem we are interested in; the proof of a Replacement Lemma needed for the hydrodynamic
limit is postponed to Sect. 4; in Sect. 5 we prove the uniqueness of weak solutions of the
hydrodynamic equations also needed for the hydrodynamic limits.

2 Notation and Results

Let T
d
N = {0, . . . ,N − 1}d = (Z/NZ)d be the d-dimensional discrete torus, and let Dd

N =
SN × T

d−1
N , with SN = {1, . . . ,N − 1}. Further, denote the d-dimensional torus by T

d =
[0,1)d = (R/Z)d , and let Dd = [0,1] × T

d−1. Moreover, let V ⊂ R
d be a finite set of veloc-

ities v = (v1, . . . , vd). Assume that V is invariant under reflexions and permutations of the
coordinates:

(v1, . . . , vi−1,−vi, vi+1, . . . , vd) and (vσ(1), . . . , vσ(d))

belong to V for all 1 ≤ i ≤ d , and all permutations σ of {1, . . . , d}, provided (v1, . . . , vd)

belongs to V .
On each site of Dd

N , at most one particle for each velocity is allowed. We denote: the num-
ber of particles with velocity v ∈ V at x ∈ Dd

N , by η(x, v) ∈ {0,1}; the number of particles in
each velocity v at a site x by ηx = {η(x, v);v ∈ V}; and a configuration by η = {ηx;x ∈ Dd

N }.
The set of particle configurations is XN = ({0,1}V )Dd

N .
On the interior of the domain, the dynamics consists of two parts: (i) each particle of

the system evolves according to a nearest neighbor weakly asymmetric random walk with
exclusion among particles of the same velocity, and (ii) binary collision between particles
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of different velocities. Let p(x, v) be an irreducible probability transition function of finite
range, and mean velocity v:

∑

x

xp(x, v) = v.

The jump law and the waiting times are chosen so that the jump rate from site x to site x +y

for a particle with velocity v is

PN(y, v) = 1

2

d∑

j=1

(δy,ej
+ δy,−ej

) + 1

N
p(y, v),

where δx,y stands for the Kronecker delta, which equals one if x = y and 0 otherwise, and
{e1, . . . , ed} is the canonical basis in R

d .

2.1 The Boundary Driven Exclusion Process

Our main interest is to examine the stochastic lattice gas model given by the generator LN

which is the superposition of the boundary dynamics with the collision and exclusion:

LN = N2{Lb
N + Lc

N + Lex
N }, (2.1)

where Lb
N stands for the generator which models the part of the dynamics at which a particle

at the boundary can enter or leave the system, Lc
N stands for the generator which models the

collision part of the dynamics and lastly, Lex
N models the exclusion part of the dynamics.

Note that time has been speeded up diffusively in (2.1).
Let f be a local function on XN . The generator of the exclusion part of the dynamics,

Lex
N , is given by

(Lex
N f )(η) =

∑

v∈V

∑

x,z∈Dd
N

η(x, v)[1 − η(z, v)]PN(z − x, v)
[
f (ηx,z,v) − f (η)

]
,

where

ηx,y,v(z,w) =
⎧
⎨

⎩

η(y, v) if w = v and z = x,

η(x, v) if w = v and z = y,

η(z,w) otherwise.

We will often use the decomposition

Lex
N = Lex,1

N + Lex,2
N ,

where

(Lex,1
N f )(η) = 1

2

∑

v∈V

∑

x,z∈Dd
N|z−x|=1

η(x, v)[1 − η(z, v)] [f (ηx,z,v) − f (η)
]
,

and

(Lex,2
N f )(η) = 1

N

∑

v∈V

∑

x,z∈Dd
N

η(x, v)[1 − η(z, v)]p(z − x, v)
[
f (ηx,z,v) − f (η)

]
.
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The generator of the collision part of the dynamics, Lc
N , is given by

(Lc
Nf )(η) =

∑

y∈Dd
N

∑

q∈Q

p(y, q, η)
[
f (ηy,q) − f (η)

]
,

where Q is the set of all collisions which preserve momentum:

Q = {q = (v,w,v′,w′) ∈ V 4 : v + w = v′ + w′},
the rate p(y, q, η) is given by

p(y, q, η) = η(y, v)η(y,w)[1 − η(y, v′)][1 − η(y,w′)],
and for q = (v0, v1, v2, v3), the configuration ηy,q after the collision is defined as

ηy,q(z, u) =
{

η(y, vj+2) if z = y and u = vj for some 0 ≤ j ≤ 3,

η(z,u) otherwise,

where the index of vj+2 should be taken modulo 4.
Particles of velocities v and w at the same site collide at rate one and produce two parti-

cles of velocities v′ and w′ at that site.
Finally, the generator of the boundary part of the dynamics is given by

(Lb
Nf )(η) =

∑

x∈Dd
N

x1=1

∑

v∈V

[αv(x̃/N)[1 − η(x, v)] + (1 − αv(x̃/N))η(x, v)][f (σ x,vη) − f (η)]

+
∑

x∈Dd
N

x1=N−1

∑

v∈V

[βv(x̃/N)[1 − η(x, v)]

+ (1 − βv(x̃/N))η(x, v)][f (σ x,vη) − f (η)],
where x̃ = (x2, . . . , xd),

σx,vη(y,w) =
{

1 − η(x,w), if w = v and y = x,

η(y,w), otherwise.

and for every v ∈ V , αv,βv ∈ C2(Td−1). We also assume that, for every v ∈ V , αv and βv

have images belonging to some compact subset of (0,1). The functions αv and βv , which
affect the birth and death rates at the two boundaries, represent the densities of the reservoirs.

Let {η(t), t ≥ 0} be the Markov process with generator LN and denote by {SN
t , t ≥ 0} the

semigroup associated to LN .
Let D(R+,XN) be the set of right continuous functions with left limits taking values

on XN . For a probability measure μ on XN , denote by Pμ the measure on the path space
D(R+,XN) induced by {η(t) : t ≥ 0} and the initial measure μ. Expectation with respect to
Pμ is denoted by Eμ.

2.2 Mass and Momentum

For each configuration ξ ∈ {0,1}V , denote by I0(ξ) the mass of ξ and by Ik(ξ), k = 1, . . . , d,

the momentum of ξ :

I0(ξ) =
∑

v∈V

ξ(v), Ik(ξ) =
∑

v∈V

vkξ(v).
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Set I (ξ) := (I0(ξ), . . . , Id(ξ)). Assume that the set of velocities is chosen in such a way that
the unique quantities conserved by the random walk dynamics described above are mass and
momentum:

∑
x∈Dd

N
I (ηx). Two examples of sets of velocities satisfying these conditions

can be found in [8].
For each chemical potential λ = (λ0, . . . , λd) ∈ R

d+1, denote by mλ the probability mea-
sure on {0,1}V given by

mλ(ξ) = 1

Z(λ)
exp {λ · I (ξ)} , (2.2)

where Z(λ) is a normalizing constant. Note that mλ is a product measure on {0,1}V , i.e.,
that the variables {ξ(v) : v ∈ V} are independent under mλ.

Denote by μN
λ the product measure on XN , with marginals given by

μN
λ {η : η(x, ·) = ξ} = mλ(ξ),

for each ξ in {0,1}V and x ∈ Dd
N . Note that {η(x, v) : x ∈ Dd

N, v ∈ V} are independent
variables under μN

λ , and that the measure μN
λ is invariant for the exclusion process with

periodic boundary condition.
The expectation under μN

λ of the mass and momentum are given by

ρ(λ) := EμN
λ

[
I0(ηx)

] =
∑

v∈V

θv(λ),

pk(λ) := EμN
λ

[
Ik(ηx)

] =
∑

v∈V

vkθv(λ).

In this formula θv(λ) denotes the expected value of the density of particles with velocity v

under mλ:

θv(λ) := Emλ
[ξ(v)] = exp{λ0 +∑d

k=1 λkvk}
1 + exp{λ0 +∑d

k=1 λkvk}
.

Denote by (ρ,p)(λ) := (ρ(λ),p1(λ), . . . , pd(λ)) the map that associates the chemical
potential to the vector of density and momentum. It is possible to prove that (ρ,p) is a
diffeomorphism onto U ⊂ R

d+1, the interior of the convex envelope of {I (ξ), ξ ∈ {0,1}V }.
Denote by 
 = (
0, . . . ,
d) : U → R

d+1 the inverse of (ρ,p). This correspondence allows
one to parameterize the invariant states by the density and momentum: for each (ρ,p) in U

we have a product measure νN
ρ,p = μN


(ρ,p) on XN .

2.3 Hydrodynamic Limit for the Boundary Driven Exclusion Process

Fix ρ0 : Dd → R+ and p0 : Dd → R
d , where p0 = (p0,1, . . . , p0,d ). We say that a sequence

of probability measures (μN)N on XN is associated to the density profile ρ0 and momentum
profile p0, if, for every continuous function G : Dd → R and for every δ > 0,

lim
N→∞

μN

[
η :

∣∣∣∣
1

Nd

∑

x∈Dd
N

G

(
x

N

)
I0(ηx) −

∫

Dd

G(u)ρ0(u)du

∣∣∣∣ > δ

]
= 0,

and for every 1 ≤ k ≤ d

lim
N→∞

μN

[
η :

∣∣∣∣
1

Nd

∑

x∈Dd
N

G

(
x

N

)
Ik(ηx) −

∫

Dd

G(u)p0,k(u)du

∣∣∣∣ > δ

]
= 0.
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Fix T > 0 and let (B,‖ · ‖B) be a Banach space. We denote by L2([0, T ],B) the Banach
space of measurable functions U : [0, T ] → B for which

‖U‖2
L2([0,T ],B)

=
∫ T

0
‖Ut‖2

Bdt < ∞.

Moreover, we denote by H 1(Dd) the Sobolev space of measurable functions in L2(Dd) that
have generalized derivatives in L2(Dd).

For x = (x1, x̃) ∈ {0,1} × T
d−1, let

d(x) =
{

a(x̃) = ∑
v∈V (αv(x̃), v1αv(x̃), . . . , vdαv(x̃)), if x1 = 0,

b(x̃) = ∑
v∈V (βv(x̃), v1βv(x̃), . . . , vdβv(x̃)), if x1 = 1.

(2.3)

Fix a bounded density profile ρ0 : Dd → R+, and a bounded momentum profile p0 :
Dd → R

d . A bounded function (ρ,p) : [0, T ] × Dd → R+ × R
d is a weak solution of the

system of parabolic partial differential equations
{

∂t (ρ,p) +∑
v∈V ṽ[v · ∇χ(θv(
(ρ,p)))] = 1

2�(ρ,p),

(ρ,p)(0, ·) = (ρ0,p0)(·) and (ρ,p)(t, x) = d(x), x ∈ {0,1} × T
d−1,

(2.4)

where χ(r) = r(1 − r) is the static compressibility, if for every vector valued function H :
[0, T ] × Dd → R

d+1 of class C1,2([0, T ] × Dd) vanishing at the boundary, we have
∫

Dd

H(T ,u) · (ρ,p)(T ,u)du −
∫

Dd

H(0, u) · (ρ0,p0)(u)du

=
∫ T

0
dt

∫

Dd

du

{
(ρ,p)(t, u) · ∂tH(t, u) + 1

2
(ρ,p)(t, u) ·

∑

1≤i≤d

∂2
ui

H(t, u)

}

− 1

2

∫ T

0
dt

∫

{1}×Td−1
dS b(ũ) · ∂u1H(t,u) + 1

2

∫ T

0
dt

∫

{0}×Td−1
dS a(ũ) · ∂u1H(t,u)

−
∫ T

0
dt

∫

Dd

du
∑

v∈V

ṽ · χ(θv(
(ρ,p)))
∑

1≤i≤d

vi∂ui
H(t, u),

dS being the Lebesgue measure on T
d−1.

We say that the solution (ρ,p) has finite energy if its components belong to
L2([0, T ],H 1(Dd)):

∫ T

0
ds

(∫

Dd

‖∇ρ(s,u)‖2du

)
< ∞,

and
∫ T

0
ds

(∫

Dd

‖∇pk(s, u)‖2du

)
< ∞,

for k = 1, . . . , d , where ∇f represents the generalized gradient of the function f .
In Sect. 5 we prove that there exists a unique weak solution of the problem (2.4).

Theorem 2.1 Let (μN)N be a sequence of probability measures on XN associated to the
profile (ρ0,p0). Then, for every t ≥ 0, for every continuous function H : Dd → R vanishing



226 A.B. Simas

at the boundary, and for every δ > 0,

lim
N→∞

PμN

[∣∣∣∣
1

Nd

∑

x∈Dd
N

H

(
x

N

)
I0(ηx(t)) −

∫

Dd

H(u)ρ(t, u)du

∣∣∣∣ > δ

]
= 0,

and for 1 ≤ k ≤ d

lim
N→∞

PμN

[∣∣∣∣
1

Nd

∑

x∈Dd
N

H

(
x

N

)
Ik(ηx(t)) −

∫

Dd

H(u)pk(t, u)du

∣∣∣∣ > δ

]
= 0,

where (ρ,p) has finite energy and is the unique weak solution of (2.4).

The strategy to prove Theorem 2.1 is to use a replacement lemma, together with some
estimates on Dirichlet forms and entropies for this boundary driven process.

3 Hydrodynamic Limit for the Boundary Driven Process

Fix T > 0, let M+ be the space of finite positive measures on Dd endowed with the weak
topology, and let M be the space of bounded variation signed measures on Dd endowed
with the weak topology. Let M+ × Md be the cartesian product of these spaces endowed
with the product topology, which is metrizable.

Recall that the conserved quantities are the mass and momentum presented in Sect. 2.2.
For k = 0, . . . , d , denote by π

k,N
t the empirical measure associated to the kth conserved

quantity:

πk,N
t = 1

Nd

∑

x∈Dd
N

Ik(ηx(t))δx/N , (3.1)

where δu stands for the Dirac measure supported on u. We denote by 〈πk,N
t ,H 〉 the integral

of a test function H with respect to an empirical measure π
k,N
t , and let 〈f,g〉ν be the inner

product in L2(ν) of f and g:

〈f,g〉ν =
∫

fgdν.

Let D([0, T ], M+ × Md) be the set of right continuous functions with left limits tak-
ing values on M+ × Md . We consider the sequence (QN)N of probability measures on
D([0, T ], M+ × Md) that corresponds to the Markov process πN

t = (π
0,N
t , . . . , π

d,N
t ) start-

ing from μN .
Let V be an open neighborhood of Dd , and consider, for each v ∈ V , smooth functions

κv
k : V → (0,1) in C2(V ), for k = 0, . . . , d . We assume that each κv

k has its image contained
in some compact subset of (0,1), that the restriction of κ = ∑

v∈V (κv
0 , v1κ

v
1 , . . . , vdκ

v
d ) to

{0} × T
d−1 equals the vector valued function a(·) defined in (2.3), and that the restriction of

κ to {1}×T
d−1 equals the vector valued function b(·), also defined in (2.3), in the sense that

κ(x) = d(x1, x̃) if x ∈ {0,1} × T
d−1.

We needed to introduce the smooth function κ to be able to obtain some entropy estimates
(see the next subsection) that are essential in the proof of the hydrodynamic limit.

Further, we may choose κ for which there exists a constant θ > 0 such that:

κ(u1, ũ) = d(−1, ũ) if 0 ≤ u1 ≤ θ,
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κ(u1, ũ) = d(1, ũ) if 1 − θ ≤ u1 ≤ 1,

for all ũ ∈ T
d−1. In that case, for every N large enough, νN

κ is reversible for the process with
generator Lb

N and then 〈−N2 Lb
Nf,f 〉νN

κ
is positive.

We then consider νN
κ the product measure on XN with marginals given by

νN
κ {η : η(x, ·) = ξ} = m
(κ(x))(ξ),

where mλ(·) was defined in (2.2). Note that with this choice, for N sufficiently large, we
have that if x ∈ {1} × T

d−1
N , then EνN

κ
[η(x, v)] = αv(x̃/N) and if x ∈ {N − 1} × T

d−1
N , then

EνN
κ
[η(x, v)] = βv(x̃/N).

3.1 Entropy Estimates

Let us recall some definitions. Recall that SN
t is the semigroup associated to the generator

LN = N2(Lex
N + Lc

N + Lb
N). Denote by ft = f N

t the Radon-Nikodym derivative of μNSN
t

with respect to νN
κ . For each function f : XN → R, let DνN

κ
(f ) be

DνN
κ
(f ) = Dex

νN
κ
(f ) + Dc

νN
κ
(f ) + Db

νN
κ
(f ),

where

Dex

νN
κ
(f ) =

∑

v∈V

∑

x∈Dd
N

∑

z∈Dd
N

PN(z − x, v)

∫ [√
f (ηx,z,v) −√

f (η)
]2

νn
κ (dη),

Dc

νN
κ
(f ) =

∑

q∈Q

∑

x∈Dd
N

∫
p(x, q, η)

[√
f (ηx,q) −√

f (η)
]2

νN
κ (dη),

and

Db

νN
κ
(f ) =

∑

v∈V

∑

x∈{1}×T
d−1
N

∫
[αv(x̃/N)(1 − η(x, v)) + (1 − αv(x̃/N))η(x, v)]

× [√
f (σ x,vη) −√

f (η)
]2

νN
κ (dη)

+
∑

v∈V

∑

x∈{N−1}×T
d−1
N

∫
[βv(x̃/N)(1 − η(x, v)) + (1 − βv(x̃/N))η(x, v)]

× [√
f (σ x,vη) −√

f (η)
]2

νN
κ (dη).

Proposition 3.1 There exists a finite constant C = C(α,β) such that

∂tH(μNSN
t |νN

κ ) ≤ −N2DνN
κ
(ft ) + CNd. (3.2)

Proof Denote by L∗
ν the adjoint operator of LN with respect to νN

κ . Then, ft is the solution
of the forward equation

{
∂tft = N2 L∗

νft ,

f0 = dμN/dνN
κ .
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Thus,

∂tH(μNSN
t |νN

κ ) =
∫

N2 L∗
νft logftdνN

κ +
∫

N2 L∗
νftdνN

κ =
∫

ftN
2 LN logftdνN

κ

= N2
∫

ft

(
LN logft − LNft

ft

)
dνN

κ + N2
∫

LNftdνN
κ .

Note that the last term is the price paid for not using an invariant measure.
Since for every a, b > 0, a log(b/a) − (b − a) is less than or equal to −(

√
b − √

a)2, for
every x, y ∈ Dd

N , we have

ft Lex
x,y,v logft − Lex

x,y,vft ≤ −PN(y − x, v)
[√

ft (ηx,y,v) −√
ft (η)

]2
,

where Lex
x,y,vf = η(x, v)[1 − η(y, v)]PN(y − x, v)[f (ηx,y,v) − f (η)]. An analogous calcu-

lation for the other parts of the generator permits to conclude that

N2
∫

ft

(
LN logft − LNft

ft

)
dνN

κ ≤ −N2DνN
κ
(ft ).

To conclude the proposition we need a bound for N2
∫

LNftdνN
κ . Let us write it explicitly:

N2
∫

LNftdνN
κ = N2

∫
(Lex,1

N ft + Lex,2
N ft + Lc

Nft + Lb
Nft )dνN

κ .

Now, we compute each term inside this integral separately.

N2
∫

Lex,1
N ftdνN

κ = N2
∫ ∑

v∈V

∑

x∈Dd
N

d∑

j=1

[f (η − dx,v + dx+ej ,v) − f (η)]dνN
κ

+ N2
∫ ∑

v∈V

∑

x∈Dd
N

d∑

j=1

[f (η − dx,v + dx−ej ,v) − f (η)]dνN
κ ,

where dx,v represents a configuration with one particle at position x and velocity v, and no
particles elsewhere. Then, if we let

γx,v = θv(
(κ(x)))/(1 − θv(
(κ(x)))),

the change of variables η − dx,v + dx+ej ,v = ξ , changes the measure as dνN
κ (η)/dνN

κ (ξ) =
γx,v/γx+ej ,v . Hence, after changing the variables, we obtain

N2
∫

Lex,1
N ftdνN

κ = N2
∑

v∈V

d∑

j=1

∫ ∑

x∈Dd
N

[
γx,v

γx+ej ,v

− 1

]
ft (η)dνN

κ

+ N2
∑

v∈V

d∑

j=1

∫ ∑

x∈Dd
N

[
γx,v

γx−ej ,v

− 1

]
ft (η)dνN

κ

=
∑

v∈V

d∑

j=1

∫ ∑

x∈Dd
N

�Nγ (x, v)

γx,v

ft (η)dνN
κ
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+ N
∑

v∈V

∫ ∑

x∈Dd
N

x1=1

∂N
u1

γ (x, v)

γx,v

ft (η)dνN
κ

− N
∑

v∈V

∫ ∑

x∈Dd
N

x1=N−1

∂N
u1

γ (x, v)

γx,v

ft (η)dνN
κ .

Since γx,v is smooth and does not vanish, we can bound the above quantity by C1N
d ,

where C1 is a constant depending only on α and β . By a similar approach, one may conclude
that

N2
∫

Lex,2
N ftdνN

κ ≤
∑

v∈V

d∑

j=1

vj

∑

x∈Dd
N

∂N
ui

γ (x, v)

γx,v

,

which is clearly bounded by C2N
d , where C2 is a constant depending only on α and β .

We now move to the generator with respect to collision. The change of variables ηy,q = ξ

changes the measure as dνN
κ (η)/dνN

κ (ξ) = (γy,vγy,w)/(γy,v′γy,w′), where v + w = v′ + w′.
Then, clearly, (γy,vγy,w)/(γy,v′γy,w′) = 1, and therefore

N2
∫

Lc
NftdνN

κ = 0.

Lastly, we note that the change of variables σx,vη = ξ changes the measure dνN
κ (η)/

dνN
κ (ξ) = αv(x̃/N)/(1 − αv(x̃/N)) or (1 − αv(x̃/N))/αv(x̃/N), depending on whether

there is or there is not a particle at the site x with velocity v, and analogously for β . There-
fore, a simple computation shows that

N2
∫

Lb
NftdνN

κ = 0.

which concludes the Proposition. �

Proposition 3.2 There exist constants C1 > 0 and C2 = C2(α,β) > 0 such that for every
density f with respect to νN

κ , then

〈
LN

√
f ,

√
f
〉
νN
κ

≤ −C1DνN
κ
(f ) + C2N

d−2.

Proof A simple computation permits to conclude that Dc

νN
κ

and Db

νN
κ

are both non-negative.
Finally, the computation for Dex

νN
κ

follows the same lines as those on the proof of Proposi-
tion 3.2, and on Lemmas 3.4 and 3.5, and is therefore omitted. �

3.2 Replacement Lemma for the Boundary

Fix k = 0, . . . , d , a continuous function G : [0, T ] × T
d−1 → R

d+1, and consider the quan-
tities

V 1
k (s, η,α,G) = 1

Nd−1

∑

x̃∈T
d−1
N

Gk(s, x̃/N)

(
Ik(η(1,x̃)(s)) −

∑

v∈V

vkαv(x̃/N)

)
,
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V 1
k (s, η,β,G) = 1

Nd−1

∑

x̃∈T
d−1
N

Gk(s, x̃/N)

(
Ik(η(N−1,x̃)(s)) −

∑

v∈V

vkβv(x̃/N)

)
,

V 2
k (s, η,α,G) = 1

Nd−1

∑

x̃∈T
d−1
N

Gk(s, x̃)

(
Ik(η(1,x̃)(s)) − 1

Nε

Nε−1∑

x1=1

Ik(η(1,x̃)(s))

)
,

and

V 2
k (s, η,β,G) = 1

Nd−1

∑

x̃∈T
d−1
N

Gk(s, x̃)

(
Ik(η(N−1,x̃)(s)) − 1

Nε

N−1∑

x1=N(1−ε)−1

Ik(η(N−1,x̃)(s))

)
,

where s ∈ [0, T ], and Gk , 0 ≤ k ≤ d are the components of function G.
The main result of this subsection is the following Lemma:

Lemma 3.3 For each 0 ≤ t ≤ T , 0 ≤ k ≤ d , and G : [0, T ] × Dd → R continuous,

lim sup
N→∞

EμN

[∣∣∣∣
∫ t

0
dsV

j

k (s, η, ζ,G)

∣∣∣∣

]
= 0,

where j = 1,2, and ζ = α,β .

Proof It is clear that V
j

k is bounded for each 0 ≤ k ≤ d , and j = 1,2. By the entropy in-
equality,

EμN

[∣∣∣∣
∫ t

0
dsV

j

k (s, η, ζ,G)

∣∣∣∣

]

≤ H(μN |νN
κ )

ANd
+ 1

ANd
logEνN

κ

[
exp

{∣∣∣∣
∫ t

0
dsANdV

j

k (s, η, ζ,G)

∣∣∣∣

}]
,

for all A > 0. We have that the first term on the right-hand side is bounded by CA−1,
for some constant C. To prove this result we must show that the limit of the sec-
ond term is less than or equal to 0 as N → ∞ for some suitable choice of A > 0.
Since e|x| ≤ ex + e−x and lim supN→∞ N−d log{aN +bN } ≤ max{lim supN→∞ N−d log(aN),

lim supN→∞ N−d log(bN)}, replacing V
j

k by −V
j

k , or more precisely, replacing Gk by −Gk ,
we only need to prove the previous statement without the absolute values in the expo-
nent. Let Wk(s) = ANdV

j

k (s, η, ζ,G). Then, by Feynman-Kac’s formula (see, for instance,
[2, 14]), we have

EνN
κ

[
exp

{∫ t

0
dsANdV

j

k (s, η, ζ,G)

}]
= 〈SWk

0,t 1,1〉νN
κ
,

where S
Wk
s,t is a semigroup associated to the operator LW

t = LN +Wk(t), for more details see
[14, A.1.7], see also [2]. Then, by Cauchy-Schwarz

〈SWk

0,t 1,1〉νN
κ

≤ 〈SWk

0,t 1, S
Wk

0,t 1〉1/2

νN
κ

.

On the other hand, since Wk is bounded, the adjoint in L2(νN
κ ) of LW

t , L
W,∗
t , is equal to

L∗
ν + Wk(t). We have that
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∂s〈SWk
s,t 1, S

Wk
s,t 1〉νN

κ
= 〈(LWk

t + LWk,∗
t )S

Wk
s,t 1, S

Wk
s,t 1〉νN

κ

= 2〈LWk
t S

Wk
s,t 1, S

Wk
s,t 1〉νN

κ
≤ λWk

(s)〈SWk
s,t 1, S

Wk
s,t 1〉νN

κ
,

where λWk
(s) = sup‖f ‖

L2(νN
κ )=1

{〈Wk(s), f 〉νN
κ

+ 〈LNf,f 〉νN
κ
}. Therefore, we obtained that

1

ANd
logEνN

κ

[
exp

{∣∣∣∣
∫ t

0
dsANdV

j

k (s, η, ζ,G)

∣∣∣∣

}]

≤
∫ t

0
ds sup

f

{∫
V

j

k (s, η, ζ,G)f (η(s))dνN
κ + 〈LN

√
f ,

√
f 〉νN

κ

ANd−2

}
.

In this formula the supremum is taken over all densities f with respect to νN
κ , and recall that

〈f,g〉ν stands for the inner product in L2(ν) of f and g. An application of Proposition 3.2
permits to conclude that 〈LN

√
f ,

√
f 〉νN

κ
is bounded above by CNd−2, where C > 0 is some

constant. Thus, if we choose, for instance, A = N , the proof follows from an application of
the auxiliary Lemmas 3.4 and 3.5 given below. �

Lemma 3.4 For every 0 ≤ t ≤ T , 0 ≤ k ≤ d , and every continuous G : [0, T ] × T
d−1 →

R
d+1,

lim sup
N→∞

EμN

[∫ t

0
dsV 1

k (s, η, ζ,G)

]
= 0,

where ζ = α,β .

Proof We will only prove for α, since for β the proof is entirely analogous. Note that G is
continuous and its domain is compact, hence, we may prove the above result without G. Set
f t = 1/t

∫ t

0 fsds. With this notation we can write the expectation above, without G, as

t

Nd−1

∑

x̃∈T
d−1
N

∫
f t (η)

[
Ik(η(1,x̃) −

∑

v∈V

vkαv(x̃/N)

]
dνN

κ

= t

Nd−1

∑

x̃∈T
d−1
N

∑

v∈V

vk

∫
f t (η)

[
η((1, x̃), v) − αv(x̃/N)

]
dνN

κ .

Then, splitting the integral into the integral over the sets [η((1, x̃), v) = 0] and
[η((1, x̃), v) = 1], and changing the variables as 1 − η(xN, v) = ξ , we obtain

t

Nd−1

∑

x̃∈T
d−1
N

∫
f t (η)

[
Ik(η(1,x̃) −

∑

v∈V

vkαv(x̃/N)

]
dνN

κ

= t

Nd−1

∑

x̃∈T
d−1
N

∑

v∈V

vk

∫
Pα,η

[
f t (η) − f t (η − d(1,x̃),v)

]
dνN

κ ,

where

Pα,η = αv(x̃/N)(1 − η((1, x̃), v)) + (1 − αv(x̃/N))η((1, x̃), v).
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Writing {a−b} = {f t (η)−f t (η−d(1,x̃),v)} as {√a−√
b}{√a+√

b} and applying Cauchy-
Schwarz, the above expression is bounded by

2t
∑

v∈V vk

A
+ t

Nd−1
ADνN

κ ,b(f t ),

where DνN
κ ,b(f t ) is the Dirichlet form of f t with respect to Lb

N . Then, choosing A = √
N ,

the proof of the Lemma follows from an application of Proposition 3.2 together with the fact
that the Dirichlet form is convex. �

The next Lemma concludes the boundary behavior of the particle system.

Lemma 3.5 For each 0 ≤ t ≤ T , 0 ≤ k ≤ d , and continuous G : [0, T ] × Dd ,

lim sup
ε→0

lim sup
N→∞

EN
μ

[∫ t

0
dsV 2

k (s, η, ζ,G)

]
= 0,

where ζ = α,β .

Proof First of all, note that since G is continuous and its domain [0, T ] × Dd is compact, it
is enough to prove the result without the multiplying factor G. Moreover, we will only prove
the first limit above, since the proof of the second one is entirely analogous. Considering the
notation used to prove Lemma 3.4, we may write the expectation above, without G, as

t

Nd−1

∑

x̃∈T
d−1
N

∫ [
Ik(η(1,x̃)) − 1

Nε

Nε−1∑

x1=1

Ik(η(x1,x̃))

]
dνN

κ .

We now obtain, by a change of variables and a telescopic sum, that the absolute value of the
above expression is bounded above by

∣∣∣∣∣
t

Nd−1

∑

x̃∈T
d−1
N

1

Nε

Nε−1∑

y=1

y−1∑

x1=1

K1

∫ [
f t

(
x1∏

i=1

τzi
(η)

)
− f t

(
x1−1∏

i=1

τzi
(η)

)]
dνN

κ .

∣∣∣∣∣,

where K1 is a constant which depends on α, β and d , z1 = 1, . . . , zy−1 = y is the path from
the origin to y across the first coordinate of the space, and τz1(η) · · · τzi

(η) is the sequence of
nearest neighbor exchanges that represents the path along z1, . . . , zi . By Cauchy-Schwarz,
this expression is bounded above by

tA

Nd−1

∑

x̃∈T
d−1
N

1

Nε

Nε−1∑

y=1

y−1∑

x1=1

K1

∫ [√√√√f t

(
x1∏

i=1

τzi
(η)

)
−

√√√√f t

(
x1−1∏

i=1

τzi
(η)

)]2

dνN
κ

+ t

ANd−1

∑

x̃∈T
d−1
N

1

Nε

Nε−1∑

y=1

y−1∑

x1=1

K1

∫ [
f t

(
x1∏

i=1

τzi
(η)

)
− f t

(
x1−1∏

i=1

τzi
(η)

)]
dνN

κ ,

for every A > 0. Now, we can bound above the last expression by

tAK1

Nd−1
Dex

νN
κ
(f t ) + tK2Nε

A
,



Hydrodynamic Limit for a Stochastic Lattice Gas Model 233

for every A > 0, where K2 is a constant that depends on K1. Then, choosing A = √
εN and

applying Proposition 3.2, we conclude the proof of this Lemma. �

3.3 Tightness

To prove tightness of the sequence (QN)N , it is enough to prove that for every k = 0, . . . , d

lim
δ→0

lim sup
N→∞

EμN

[
sup

|t−s|<δ

∣∣∣∣
1

Nd

∑

x∈Dd
N

H

(
x

N

)
Ik(ηx(t)) − 1

Nd

∑

x∈Dd
N

H

(
x

N

)
Ik(ηx(s))

∣∣∣∣

]
= 0,

for any smooth test function H : Dd → R vanishing at the boundary.
Fix 0 ≤ k ≤ d , then, by Dynkin’s formula

Mk
t = 〈πk,N

t ,H 〉 − 〈πk,N
0 〉 −

∫ t

0
LN 〈πk,N

s ,H 〉ds (3.3)

is a martingale. On the other hand,

EμN [Mk
t ]2 = EμN

[∫ t

0

{
LN 〈πk,N

s ,H 〉2 − 2〈πk,N
s ,H 〉LN 〈πk,N

s ,H 〉}ds

]
.

Writing the above expression as four sums, the first corresponds to the nearest neighbor
symmetric exclusion process and the other corresponds to the asymmetric exclusion process,
the third and fourth corresponding to the collision and boundary parts of the dynamics,
respectively. A long, albeit simple computation shows that all of these sums are of order
O(N−d), and therefore, the right-hand side of the above expression is of the same order.
Thus, by Doob’s inequality, EμN [sup0≤s≤t (M

k
s )2] = O(N−d).

Hence, by (3.3) and the above estimates, we have

1

Nd

∑

x∈Dd
N

H

(
x

N

)
Ik(ηx(t))

= 1

Nd

∑

x∈Dd
N

H

(
x

N

)
Ik(ηx(s))

+ 1

Nd

d∑

j=1

∑

x,z∈Dd
N

∑

v∈V

∫ t

s

p(z, v)vkηr(0, v)[1 − ηr(z, v)]zj (∂uj
H)

(
x

N

)
dr

+ 1

2Nd

∑

x∈Dd
N

∫ t

s

(�H)

(
x

N

)
Ik(ηx(r))dr + 1

Nd−1

∑

x∈Dd
N

x1=N−1

∫ t

s

∂u1H

(
x

N

)
Ik(ηx(r))dr

− 1

Nd−1

∑

x∈Dd
N

x1=1

∫ t

s

∂u1H

(
x

N

)
Ik(ηx(r))dr + RN + O(N−d) + O(N−1),

where the terms were obtained from LN 〈πk,N
s ,H 〉 by means of summation by parts, and

the replacement of discrete derivatives and discrete Laplacian by the continuous ones, and
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RN is the error coming from such replacements. Since p is of finite range, the error RN is
uniformly of order O(N−1). Finally, by using Lemma 3.3 and a calculation similar to the
one found in (3.10), we have that Lb

N 〈πk,N
s ,H 〉 = O(N−1). Tightness thus follows from the

above estimates.
Our next goal is to prove the replacement lemma. To do so, we need the following result

known as equivalence of ensembles, which will be used in the proofs of the one block
estimate and of the two block estimate.

3.4 Equivalence of Ensembles

Fix L ≥ 1 and a configuration η, let IL(x, η) := IL(x) = (IL
0 (x), . . . , IL

d (x)) be the average
of the conserved quantities in a cube of the length L centered at x:

IL(x) = 1

|
L|
∑

z∈x+
L

I (ηz),

where, 
L = {−L, . . . ,L}d and |
L| = (2L + 1)d is the discrete volume of box 
L.
Let VL be the set of all possible values of IL(0, η) when η runs over ({0,1}V )
L , that is,

VL = {
IL(0, η);η ∈ ({0,1}V t

)
L
}
.

Note that VL is a finite subset of the convex envelope of {I (ξ) : ξ ∈ {0,1}V }. The set of
configurations ({0,1}V )
L splits into invariant subsets: for i in VL, let

HL(i) := {
η ∈ ({0,1}V)
L : IL(0) = i

}
.

For each i in VL, define the canonical measure νL,i as the uniform probability measure on
HL(i). Note that for every λ in R

d+1

ν
L,i(·) = μ

L
λ

(· ∣∣IL = i
)
.

Let 〈g;f 〉μ stands for the covariance of g and f with respect to μ: 〈g;f 〉μ = Eμ[fg] −
Eμ[f ]Eμ[g].

Proposition 3.6 (Equivalence of ensembles) Fix a cube 
� ⊂ 
L. For each i ∈ VL, de-
note by ν� the projection of the canonical measure ν
L,i on 
� and by μ� the projection
of the grand canonical measure μL

�(i) on 
�. Then, there exists a finite constant C(�, V),
depending only on � and V , such that

∣∣Eμ� [f ] − Eν� [f ]∣∣ ≤ C(�, V)

|
L| 〈f ;f 〉1/2
μ�

for every function f : ({0,1}V )
� �→ R.

The proof of Proposition 3.6 can be found in Beltrán and Landim [1].

3.5 Replacement Lemma

We now state the replacement lemma that will allow us to prove that the limit points Q are
concentrated on weak solutions of (2.4).
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Lemma 3.7 (Replacement lemma) For all δ > 0, 1 ≤ j ≤ d , 0 ≤ k ≤ d :

lim sup
ε→0

lim sup
N→∞

PμN

[∫ T

0

1

Nd

∑

x∈Dd
N

τxV
j,k

εN (η(s))ds ≥ δ

]
= 0,

where

V
j,k

� (η) =
∣∣∣∣

1

(2� + 1)d

∑

y∈
�

∑

v∈V

vk

∑

z∈Zd

p(z, v)zj τy(η(0, v)[1 − η(z, v)])

−
∑

v∈V

vjvkχ(θv(
(I �(0))))

∣∣∣∣. (3.4)

Note that V
j,k

εN is well-defined for large N since p(·, v) is of finite range. We now observe
that Propositions 3.1 and 3.2 permit us to prove the following replacement lemma for the
boundary driven exclusion process by using the process without the boundary part of the
generator (see [18] for further details). We postpone the rest of the proof to Sect. 4.

3.6 Energy Estimates

We will now define some quantities to prove that each component of the solution vector
belongs, in fact, to H 1([0, T ] × Dd). The proof is similar to the one found in [15].

Let the energy Q : D([0, T ], M) → [0,∞] be given by

Q(π) =
d∑

i=1

Qi (π),

with

Qi (π) = sup
G∈C∞

c (�T )

{
2
∫ T

0
dt〈πt , ∂ui

Gt 〉 −
∫ T

0

∫

Dd

duG(t, u)2

}
,

where �T = (0, T )×Dd and C∞
c (�T ) stands for the set of infinitely differentiable functions

(with respect to both the time and space) with compact support in �T . Let now, for any
G ∈ C∞

c (�T ), 1 ≤ i ≤ d and C ≥ 0, QG
i,C : D([0, T ], M) → R be the functional given by

QG
i,C(π) =

∫ T

0
ds〈πs, ∂ui

Gs〉 − C

∫ T

0
ds

∫

Dd

duG(s,u)2.

Note that

sup
G∈C∞

c (�T )

{QG
i,C} = Qi (π)

4C
. (3.5)

Lemma 3.8 There exists a constant C0 = C0(κ) > 0, such that for every i = 1, . . . , d , every
k = 0, . . . , d , and every function G in C∞

c (�T )

lim sup
N→∞

1

Nd
logEνN

κ

[
exp

{
Nd QG

i,C0
(πN,k)

}]
≤ C0.
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Proof Applying Feynman-Kac’s formula and using the same arguments in the proof of
Lemma 3.3, we have that

1

Nd
logEνN

κ

[
exp

{
N

∫ T

0
ds

∑

x∈Dd
N

(Ik(ηx(s)) − Ik(ηx−ei
(s)))G(s, x/N)

}]

is bounded above by

1

Nd

∫ T

0
λN

s ds,

where λN
s is equal to

sup
f

{〈
N

∑

x∈Dd
N

(Ik(η(x)) − Ik(η(x − ei)))G(s, x/N),f

〉

νN
κ

+ N2〈LN

√
f ,

√
f 〉νN

κ

}
,

where the supremum is taken over all densities f with respect to νN
κ . By Proposition 3.2,

the expression inside brackets is bounded above by

CNd − N2

2
DνN

κ
(f ) +

∑

x∈Dd
N

{
NG(s, x/N)

∫
[Ik(ηx) − Ik(ηx−ei

)]f (η)νN
κ (dη)

}
.

We now rewrite the term inside the brackets as

∑

v∈V

vk

∑

x∈Dd
N

{∫
NG(s, x/N)[η(x, v) − η(x − ei, v)]f (η)νN

κ (dη)

}
. (3.6)

After a simple computation, we may rewrite the terms inside the brackets of the above
expression as

NG(s, x/N)

∫
[η(x, v) − η(x − ei, v)]f (η)νN

κ (dη)

= NG(s, x/N)

∫
η(x, v)f (η)νN

κ (dη)

− NG(s, x/N)

∫
η(x, v)f (ηx−ei ,x,v)

γx−ei ,v

γx,v

νN
κ (dη)

= NG(s, x/N)

∫
η(x, v)[f (η) − f (ηx−ei ,x,v)]νN

κ (dη)

+ G

∫
η(x, v)f (ηx−ei ,x,v)N

[
1 − γx−ei ,v

γx,v

]

≤ G(s, x/N)2
∫

f (ηx−ei ,x,v)νN
κ (dη)

+ 1

4

∫
η(x, v)f (ηx−ei ,x,v)

[
N

(
1 − γx−ei

, v

γx,v

)]2

νN
κ (dη)

+ N2
∫

1

2

[√
f (ηx−ei ,x,v) −√

f (η)
]2

νN
κ (dη)
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+ 2G(s, x/N)2
∫

η(x, v)
(√

f (η) +√
f (ηx−ei ,x,v)

)2
νN

κ (dη).

Using the above estimate, we have that (3.6) is clearly bounded above by C1 +C1G(s, x/N)2,
by some positive constant C1 = C1(κ), since γ·,v is smooth and the fact that f is a density
with respect to νN

κ . Thus, letting C0 = C + C1, the statement of the Lemma holds. �

It is well-known that Q(π) is finite if and only if π has a generalized gradient, ∇π =
(∂u1π, . . . , ∂ud

π), and

Q̂(π) =
∫ T

0

∫

Dd

du‖∇πt(u)‖2 < ∞.

In which case, Q(π) = Q̂(π). Recall that the sequence (QN)N defined in the beginning of
this section is tight. We have then the following proposition:

Proposition 3.9 Let Q∗ be any limit point of the sequence of measures (QN)N . Then,

EQ∗

[∫ T

0
ds

(∫

Dd

‖∇ρ(s,u)‖2du

)]
< ∞,

and

EQ∗

[∫ T

0
ds

(∫

Dd

‖∇pk(s, u)‖2du

)]
< ∞.

Proof We thus have to prove that the energy Q(π) is almost surely finite. Fix a constant
C0 > 0 satisfying the statement of Lemma 3.8. Let {Gm : 1 ≤ m ≤ r} be a sequence of func-
tions in C∞

0 (�T ) (the space of infinitely differentiable functions vanishing at the boundary)
and 1 ≤ i ≤ d , and 0 ≤ k ≤ d , be integers. By the entropy inequality, there is a constant
C > 0 such that

EμN

[
max

1≤m≤r

{
QGm

i,C0
(πN,k)

}] ≤ C + 1

Nd
logEνN

κ

[
exp

{
Nd max

1≤m≤r
{QGm

i,C0
(πN,k)}

}]
.

Therefore, Lemma 3.8 together with the elementary inequalities

lim sup
N→∞

N−d log(aN + bN) ≤ lim sup
N→∞

max
{

lim sup
N→∞

N−d log(aN), lim sup
N→∞

N−d log(bN)
}

and exp{max{x1, . . . , xn}} ≤ exp(x1) + · · · + exp(xn) imply that

EQ∗
[

max
1≤m≤r

{
QGm

i,C0
(πN,k)

}] = lim
N→∞

EμN

[
max

1≤m≤r

{
QGm

i,C0
(πN,k)

}]

≤ C + C0.

Using this, (3.5) and the monotone convergence theorem, we obtain the desired result. �

3.7 Proof of Theorem 2.1

Note that all limit points Q∗ of (QN)N are concentrated on absolutely continuous measures
with respect to the Lebesgue measure since there is at most one particle per site, that is,

Q∗{π;πk(du) = pk(u)du, for all 0 ≤ k ≤ d} = 1,
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where πk denotes the kth component of π and p0 = ρ.
For k = 0, . . . , d , denote, again, by π

k,N
t the empirical measure associated to the kth

thermodynamic quantity:

πk,N
t = 1

Nd

∑

x∈Dd
N

Ik(ηx(t))δx/N .

Further, denote by π
k,N,b1
t and π

k,N,bN−1
t the empirical measures associated to the kth ther-

modynamic quantity restricted to the boundaries:

π
k,N,bi
t = 1

Nd−1

∑

x∈Dd
N

x1=i

Ik(ηx(t))δx/N ,

for i = 1,N − 1.
To compute LN 〈πk,N

t ,H 〉 for this process, we note that Lc
NIk(ηx) vanishes for k =

0, . . . , d , because the collision operator preserves local mass and momentum.
Since, in our definition of weak solution we considered test functions H vanishing at

the boundary, that is, H(x) = 0, if x ∈ {0,1} × T
d−1, we assume that H vanishes at the

boundary as well.
Now, we consider the martingale

M
N,H
t,k = 〈πk,N

t ,H 〉 − 〈πk,N
0 ,H 〉 −

∫ t

0
N2 LN 〈πk,N

s ,H 〉ds,

which can be decomposed into

M
N,H
t,k = 〈πk,N

t ,H 〉 − 〈πk,N
0 ,H 〉 −

∫ t

0
N2 Lex,1

N 〈πk,N
s ,H 〉ds (3.7)

−
∫ t

0
N2 Lex,2

N 〈πk,N
s ,H 〉ds −

∫ t

0
N2 Lb

N 〈πk,N
s ,H 〉ds. (3.8)

We first prove that
∫ t

0
N2 Lb

N 〈πk,N
s ,H 〉ds (3.9)

vanishes as N → ∞. A simple calculation shows that

N2 Lb
Nη(x, v) = N2

[
αv(x̃/N) − η(x, v)

]
, if x1 = 1,

and

N2 Lb
Nη(x, v) = N2

[
βv(x̃/N) − η(x, v)

]
, if x1 = N − 1.

Since H vanishes on the boundary, H((x +e1)/N) = 0 if x1 = N −1, and H((x −e1)/N) =
0 if x1 = 0. Then, we have the equalities NH(x/N) = ∂N

x1
H((x − e1)/N), if x1 = 1, and
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NH(x/N) = −∂N
x1

H(x/N), if x1 = N − 1. Therefore, we obtain

N2 Lb
N 〈πk,N ,H 〉 = 1

Nd−1

∑

x∈Dd
N

x1=1

∑

v∈V

vk

[
αv

(
x̃

N

)
− η(x, v)

]
∂N

x1
H

(
x − e1

N

)

− 1

Nd−1

∑

x∈Dd
N

x1=N−1

∑

v∈V

vk

[
β

(
x̃

N

)
− η(x, v)

]
∂N

x1
H

(
x

N

)
. (3.10)

We now use the last computation together with Lemma 3.3 to conclude that (3.9) vanishes
as N → ∞.

Further, after two summations by parts of the integrand on the right-hand term of (3.7),
we have that

∫ t

0
N2 Lex,1

N 〈πk,N
s ,H 〉ds = 1

2

∫ t

0
〈πk,N

s ,�NH 〉ds

+ 〈πk,N,bN−1
t , ∂N

u1
H 〉 − 〈πk,N,b1

t , ∂N
u1

H 〉,
and after one summation by parts on the right-hand term of (3.8), and noting again that H

vanishes at the boundaries, we have that

∫ t

0
N2 Lex,2

N 〈πk,N
s ,H 〉ds = − 1

Nd

∫ t

0

d∑

j=1

∑

x∈T
d
N

(∂N
uj

H)

(
x

N

)
τxW

N,s
j,k ds,

where τx stands for the translation by x on the state space XN so that (τxη)(y, v) = η(x +
y, v) for all x, y ∈ Z

d , v ∈ V , and W
N,s
j,k is given by:

W
N,s
j,k =

∑

v∈V

vk

∑

z∈Zd

p(z, v)zjηs(0, v)[1 − ηs(z, v)],

where v0 = 1. Since p(·, v) is of finite range,

EμN
λ

[
W

N,s
j,k

] =
∑

v∈V

vkvjχ(θv(λ)),

where χ(a) = a(1 − a). Now, note that EνN
κ
(η(x, v)) = αv(x/N) if x ∈ {1} × T

d−1
N and

EνN
κ
(η(x, v)) = βv(x/N) if x ∈ {N − 1} × T

d−1
N .

We then apply Lemma 3.7 to write the martingale in terms of the empirical measure. Fur-
ther, we apply the replacement lemma for the boundary (Lemma 3.3) to obtain that all limit
points satisfy the integral identity in the definition of weak solution of the problem (2.4).

Using the previous computations and the tightness of the sequence of measures QN (for
more details see [14, Chap. 5]) we conclude that all limit points are concentrated on weak
solutions of

∂t (ρ,p) +
∑

v∈V

ṽ
[
v · ∇χ(θv(
(ρ,p)))

] = 1

2
�(ρ,p),

with boundary conditions, given in the trace sense, by

(ρ,p)(t, x) = a(x̃), for x ∈ {0} × T
d−1, (3.11)
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and

(ρ,p)(t, x) = b(x̃), for x ∈ {1} × T
d−1, (3.12)

where a(·) and b(·) were defined in (2.3), and v0 = 1. The uniqueness of weak solutions
of the above equation implies that there is at most one limit point. Moreover, by Propo-
sition 3.9, each limit point of (QN)N is concentrated on a vector of measures with finite
energy, that is: whose components have densities with respect to the Lebesgue measure that
belong to the Sobolev space H 1(Dd). This completes the proof of the theorem.

4 Proof of the Replacement Lemma

As mentioned in the Sect. 3.5, we only have to prove this result for the process without the
boundary dynamics. In this case, we have a product invariant measure given by νN

ρ,p .
Let μN(T ) be the Cesaro mean of μNSN

t , namely:

μN(T ) = 1

T

∫ T

0
μNSN

t dt,

and let f
N

T,k be the Radon-Nikodym density of μN(T ) with respect to νN
ρ,p . We have that

the Dirichlet form of f
N

T,k , DN(f
N

T,k, ν
N
ρ,p), is bounded by CNd−2/2T , where C is some

constant. Therefore, to prove the replacement lemma, it is enough to show that

lim sup
ε→0

lim sup
N→∞

sup
DN (f,νρ,p)<CNd−2

∫
1

Nd

∑

x∈Dd
N

τxV
j,k

εN (η(s))f (η)νN
ρ,p(dη) = 0.

From now on we will simply write the Dirichlet form of a function f with respect to the
measure νN

ρ,p as DN(f ).
To prove the replacement lemma, we will prove the one and two block estimates:

Lemma 4.1 (One block estimate) For every constant C > 0, for 1 ≤ j ≤ d and for 0 ≤
k ≤ d :

lim sup
�→∞

lim sup
N→∞

sup
DN (f )≤CNd−2

∫
1

Nd

∑

x∈Dd
N

(τxV
j,k

� )(η)f (η)νN
ρ,p(dη) = 0,

where V
j,k

� (η) was defined in Lemma 3.7.

Lemma 4.2 (Two block estimate) For every constant C > 0, for 1 ≤ j ≤ d and for 0 ≤
k ≤ d :

lim sup
�→∞

lim sup
ε→0

lim sup
N→∞

sup
DN (f )≤CNd−2

sup
y∈
εN

∫
1

Nd

∑

x∈Dd
N

∣∣∣I �(x + y) − INε(x)

∣∣∣f (η)νN
ρ,p = 0,

where I �(x) was defined in Sect. 3.4.
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4.1 Proof of One Block Estimate

We begin by noting that the exclusion rule and the fact that V is finite prevents large densities
or large momentum on I �(0).

We have that the measure νN
ρ,p is translation invariant. Therefore, we can write the sum

on one block estimate as
∫

V
j,k

� (η)

(
1

Nd

∑

x∈Dd
N

τxf

)
(η)νN

ρ,p(dη) =
∫

V
j,k

� (η)f (η)νN
ρ,p(dη),

where f stands for the space average of all translations of f :

f (η) = 1

Nd

∑

x∈Dd
N

τxf (η).

Denote by X� the configuration space ({0,1}V )
� , by ξ some configuration on X� and
by ν�

ρ,p the product measure νN
ρ,p restricted to X�. For a density f : XN → R+, f� stands for

the conditional expectation of f with respect to the σ -algebra generated by {η(x, v) : x ∈

�,v ∈ V}, that is obtained by integrating all coordinates outside this hypercube:

f�(xi) = 1

ν�
ρ,p(ξ)

∫
1{η:η(z,v)=ξ(z,v),z∈
�,v∈V}f (η)νN

ρ,p(dη),

for ξ ∈ X�.
Since V

j,k

� (η) depends on the configuration η only through the occupation variables
{η(x, v) : x ∈ 
�,v ∈ V}, in the last integral we can replace f by f �. In particular, to prove
the lemma it is enough to show that

lim sup
�→∞

lim sup
N→∞

sup
DN (f )≤CNd−2

∫
V

j,k

� (ξ)f �(ξ)ν�
ρ,p(dξ) = 0. (4.1)

We will now compute some estimates on the Dirichlet form. Let 〈·, ·〉ν be the inner prod-
uct in L2(ν). For positive f , denote the Dirichlet form of f as:

DN(f ) = −〈√f , (Lex
N + Lc

N )f 〉νN
ρ,p

= −〈√f , Lex,1
N f 〉νN

ρ,p
− 〈√f , Lex,2

N f 〉νN
ρ,p

− 〈√f , Lc
Nf 〉νN

ρ,p

:= DN,1(f ) + DN,2(f ) + DN,c(f ).

We have that

DN,1(f ) =
∑

x,z∈Dd
N|x−z|=1

I (1)
x,z (f ),

DN,2(f ) = 1

N

∑

x,z∈Dd
N

I (2)
x,z (f )

and

DN,c(f ) =
∑

x∈Dd
N

I (c)
x (f ),
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where

I (1)
x,z (f ) =

∑

v∈V

1

2

∫
[√f (ηx,x+z,v) −√

f (η)]2νN
ρ,p(dη),

I (2)
x,z (f ) =

∑

v∈V

∫
p(z, v)[√f (ηx,x+z,v) −√

f (η)]2νN
ρ,p(dη)

and

I (c)
x,z(f ) =

∑

q∈Q

∫
p(x, q, η)[√f (ηx,q) − f (η)]2νN

ρ,p(dη).

Since the Dirichlet form is translation invariant and convex, we have that DN(f ) ≤ DN(f ).
Now, let

D�(h) =
∑

x,z∈
�|x−z|=1

I �,(1)
x,z (h) +

∑

x,z∈
�

1

N
I�,(2)
x,z (h) +

∑

x∈
�

I �,(c)
x (h),

where each I �,(i) equals I (i) with νN
ρ,p replacing ν�

ρ,p . By using Schwarz inequality and the
definition of f�, we obtain that

I �,(1)
x,z (f �) ≤ I (1)

x,z (f ), I �,(2)
x,z (f �) ≤ I (2)

x,z (f ) and I �,(c)
x (f �) ≤ I (c)

x (f )

for every x, z ∈ 
�. Therefore,

D�(f �) ≤
∑

x,z∈
�|x−z|=1

I (1)
x,z (f �) +

∑

x,z∈
�

1

N
I(2)
x,z (f �) +

∑

x∈
�

I (c)
x (f �).

On the other hand, by translation invariance of f , I (1)
x,z (f ) = I

(1)
x+y,z+y(f ), I (2)

x,z (f ) =
I

(2)
x+y,z+y(f ) and I (c)

x (f ) = I
(c)

0 (f ). Hence,

D�(f �) ≤ (2� + 1)d

d∑

i=1

I
(1)

0,ei
(f ) + (2� + 1)d

N

∑

y∈
�

I
(2)

0,y (f ) + (2� + 1)dI
(c)

0 (f )

≤ (2� + 1)d

Nd
(DN,1(f ) + DN,2(f ) + DN,c(f )).

Since the Dirichlet form is positive, DN(f ) ≤ CNd−2 implies that DN,1(f ) ≤ CNd−2,

DN,2(f ) ≤ CNd−1 and DN,c(f ) ≤ CNd−2. Thus,

D�(f �) ≤ 3C(2� + 1)dN−2 := C0(C, �)N−2.

Therefore, the Dirichlet form of f � vanishes as N ↑ ∞. Hence, by (4.1), to prove the one
block estimate we must show that

lim sup
�→∞

lim sup
N→∞

sup
D�(f )≤C0(C,�)N−2

∫
V

j,k

� (ξ)f (ξ)ν�
ρ,p(dξ) = 0 (4.2)

with the supremum carried over all densities with respect to νN
ρ,p .
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We will now take the limit as N ↑ ∞. To do so, we note that V
j,k

� ≤ C1, where C1 is
some constant, and therefore

∫

X�

V
j,k

� (ξ)f (ξ)νN
ρ,p(dξ) ≤ C1.

This subset of M+(X�) is compact for the weak topology, and since it is compact, for
each N , there exists a density fN with Dirichlet form bounded by C0N

−2 that reaches the
supremum. Let now Nn be a subsequence such that

lim
n→∞

∫
V

j,k

� fNn(ξ)ν�
ρ,p(dξ) = lim sup

N→∞

∫
V

j,k

� (ξ)fN(ξ)ν�
ρ,p(dξ).

To keep notation simple, assume, without loss of generality, that the sequences Nn and
N coincide. By compactness, we can find a convergent subsequence fNn . Denote by f∞ the
weak limit. Since the Dirichlet form is lower semicontinuous

D�(f∞) = 0.

Moreover, by weak continuity,

lim
n→∞

∫
V

j,k

� (ξ)fNn(ξ)ν�
ρ,p(dξ) =

∫
V

j,k

� (ξ)f∞(ξ)ν�
ρ,p(dξ).

In conclusion, expression (4.2) is bounded above by

lim sup
�→∞

sup
D�(f )=0

∫
V

j,k

� (ξ)f (ξ)ν�
ρ,p(dξ).

We will now decompose along sets with a fixed number of conserved quantities.
Recall that VL is the set of all possible values of IL(0) when η runs over ({0,1}V )
L .

Further, VL is finite. Furthermore, consider for each i in VL the canonical measure νL,i

defined in Sect. 3.4; and moreover, recall that

ν
L,i(·) = μ

L
λ

(· ∣∣IL = i
)
.

A probability density with Dirichlet form equal to zero is constant on each set with a
fixed number of conserved quantities. It is convenient therefore to decompose each density
f along these sets. Thus

∫
V

j,k

� (ξ)f (ξ)νN
ρ,p(dξ) =

∑

j∈V�

Tj (f )

∫
V

j,k

� ν�,j (dξ),

where,

Tj (f ) =
∫

1H�(j)f (ξ)ν�
ρ,p(dξ).

Since
∑

j∈H�(j) Tj (f ) = 1, to conclude the proof of the one block estimate, we must
show that

lim sup
�→∞

sup
j∈V�

∫
V

j,k

� (ξ)ν�,j (dξ) = 0.
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Since the measure ν�,j is concentrated on configurations with conserved quantity j , the last
integral equals

∫ ∣∣∣∣
1

(2� + 1)d

∑

y∈
�

∑

v∈V

vk

∑

z

p(z, v)zj τy(h(ξ, z, v)) −
∑

v∈V

vjvkEν�
j
[h(ξ, e1, v)]

∣∣∣∣ν�,j (dξ),

where h(ξ, z, v) = ξ(0, v)(1 − ξ(z, v)).
Fix some positive integer n, that shall increase to infinity after �. Decompose the set 
�

in cubes of length 2k + 1. Consider the set A = {(2n + 1)x, x ∈ Z
d} ∩ 
�−n and enumerate

its elements: A = {x1, . . . , xq} in such a way that |xi | ≤ |xj | for i ≤ j . For 1 ≤ i ≤ q , let Bi =
xi + 
n. Note that Bi ∩ Bj = ∅ if i �= j and that ∪1≤i≤qBi ⊂ 
�. Let B0 = 
� − ∪1≤i≤qBi .
By construction |B0| ≤ Kn�d−1 for some universal constant K . The previous integral is
bounded above by

q∑

i=0

|Bi |
|
�|

∫ ∣∣∣∣
∑

v∈V

vk

(
1

|Bi |
∑

y∈Bi

∑

z

p(z, v)zj τy(h(ξ, z, v)) − vjEν�
j
[h(ξ, e1, v)]

)∣∣∣∣ν�,j (dξ).

Since |B0| ≤ Kn�d−1,
∑

v vkξ(0, v)(1 − ξ(z, v)) has mean
∑

v vkχ(θv(
(j))), and
|∑z∈Bi

p(z, v)zj | is bounded, the sum is equal to

|
n|
|
�|

q∑

i=0

∫ ∣∣∣∣
∑

v∈V

vk

(
1

|Bn|
∑

y∈Bi

∑

z

p(z, v)zj τy(h(ξ, z, v)) − vjEν�
j
[h(ξ, e1, v)]

)∣∣∣∣ν�,j (dξ)

plus a term of order O(n/�). Since the distribution of {ξ(z, v); z ∈ Bi, v ∈ V} does not de-
pend on i, the previous sum is equal to

∫ ∣∣∣∣
∑

v∈V

vk

(
1

(2n + 1)d

∑

y∈
n

∑

z

p(z, v)zj τy(h(ξ, z, v)) − vjEν�
j
[h(ξ, e1, v)]

)∣∣∣∣ν�,j (dξ)

plus a term of order O(n/�).
Now, let μλ be the product measure on ({0,1}V )Z

d
with marginals given by

μλ{η : η(x, ·) = ξ} = mλ(ξ),

for each ξ ∈ {0,1}V and x ∈ Z
d . Therefore, Eν�

j
[ξ(0, v)(1 − ξ(e1, v))] = Eνj

[ξ(0, v)(1 −
ξ(e1, v))], where νj = μ
(j). Moreover, if in the equivalence of ensembles we choose L =
L(�) = �C(�, V)�, where C(�, V) is the constant given in the equivalence of ensembles, we
can replace the canonical measure by the grand canonical measure paying a price of order
o�(1). Therefore, we can write the previous integral as

∫ ∣∣∣∣
∑

v∈V

vk

(
1

(2n + 1)d

∑

y∈
n

∑

z

p(z, v)zj τy(h(ξ, z, v)) − vjEνj
[h(ξ, e1, v)]

)∣∣∣∣ν
�
j (dξ)

plus a term of order o�(1). We now note that νj equals ν�
j on 
�. Then, the integral can be

written as
∫ ∣∣∣∣

∑

v∈V

vk

(
1

(2n + 1)d

∑

y∈
n

∑

z

p(z, v)zj τy(h(ξ, z, v)) − vjEνj
[h(ξ, e1, v)]

)∣∣∣∣νj (dξ)
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plus a term of order o�(1). Let now,

gj (ξ) =
∣∣∣∣
∑

v∈V

vk

(
1

(2n + 1)d

∑

y∈
n

∑

z

p(z, v)zj τy(h(ξ, z, v)) − vjEνj
[h(ξ, e1, v)]

)∣∣∣∣,

but we know that Eνj
[h(ξ, e1, v)] = χ(θv(
(j))), then,

gj (ξ) =
∣∣∣∣
∑

v∈V

vk

(
1

(2n + 1)d

∑

y∈
n

∑

z

p(z, v)zj τy(h(ξ, z, v)) − vjχ(θv(
(j)))

)∣∣∣∣.

Now, ({0,1}V )Z
d

is compact on the product topology, and also, all the marginals of νj con-
verge to the marginals of νρ,p , when j → (ρ,p) as � → ∞. Then, νj converges weakly to
νρ,p . Further, since gj (ξ) → gρ,p(ξ) for every ξ , we have from Theorem 5.5 of Billingsley
[6], that

∫
gj (ξ)νj (dξ)

�→∞−→
∫

gρ,p(ξ)νρ,p(dξ),

this convergence being uniform on compact subsets of R+ × R
d . Then, since the remainder

term is o�(1), the limit as � → ∞ and j → (ρ,p) is

∫ ∣∣∣∣
1

(2n + 1)d

∑

y∈
n

∑

v∈V

vk

∑

z

zjp(z, v)τy(h(ξ, z, v)) −
∑

v∈V

vjvkχ(θv(
(ρ,p)))

∣∣∣∣νρ,p(dξ).

On the other hand, as k ↑ ∞, by the law of large numbers, this integral converges to 0.
Therefore, the one block estimate is proved.

4.2 Proof of the Two Block Estimate

To prove the two block estimate, it is enough to show that

lim sup
�→∞

lim sup
ε→0

lim sup
N→∞

sup
DN (f )≤CNd−2

sup
y∈(
εN \
�)

∫
1

Nd

∑

x∈Dd
N

∣∣I �(x) − I �(x + y)
∣∣f (η)νN

ρ,p(dη)

= 0. (4.3)

As for the one block estimate, we can rewrite this integral as
∫ ∣∣I �(0) − I �(y)

∣∣f (η)νN
ρ,p(dη),

where f stands for the average of all space translations of f . I �(0) and I �(y) depend of the
configuration η only through the occupation variables {η(x, v) : x ∈ 
y,�, v ∈ V}, where


y,� = {−�, . . . , �}d ∪ [y + {−�, . . . , �}d ].
We now introduce some notation. For positive integer �, let X2,� denote the configuration
space ({0,1}V )
� × ({0,1}V )
� , ξ = (ξ1, ξ2) the configurations of X2,� and the product
measure νN

ρ,p restricted to X2,� (which does not depend on N ) by ν2,�
ρ,p . Denote by fy,�

the conditional expectation of f with respect to the σ -algebra generated by {η(x, v) : x ∈

y,�, v ∈ V}.
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Since I �(0) and I �(y) depend on η(x, v), for x ∈ 
y,� and v ∈ V , we may replace f by
f y,�, and then, we can rewrite (4.3) as

lim sup
�→∞

lim sup
ε→0

lim sup
N→∞

sup
DN (f )≤CNd−2

sup
y∈(
εN \
�)

∫
1

Nd

∑

x∈Dd
N

∣∣E�
1(0) − E�

2(0)
∣∣f y,�(ξ)ν2,�

ρ,p(dξ)

= 0,

where

E�
i (x) = 1

|
�|
∑

z∈x+
�

I (ξiz).

Now, we need to obtain information concerning the density f y,� from the bound on the
Dirichlet form of f . Then, let D2,� be the Dirichlet form defined on positive densities h :
X2,� → R+ by

D2,�(h) = I �
0,0(h) + D�

1(h) + D�
2(h),

where,

D�
1(h) =

∑

v∈V

∫ [ ∑

x,z∈
�|x−z|=1

1

2
+ 1

N

∑

x,z∈
�

p(z, v)

][√
h(ξ

x,x+z,v
1 , ξ2) −√

h(ξ)
]2

ν2,�
ρ,p(dξ)

+
∑

x∈
�

∑

v∈V

∫
p(x, q, ξ1)

[√
h(ξ

x,q

1 , ξ2) −√
h(ξ)

]2
ν2,�

ρ,p(dξ),

D�
2(h) =

∑

v∈V

∫ [ ∑

x,z∈
�|x−z|=1

1

2
+ 1

N

∑

x,z∈
�

p(z, v)

][√
h(ξ1, ξ

x,x+z,v
2 ) −√

h(ξ)
]2

ν2,�
ρ,p(dξ)

+
∑

x∈
�

∑

v∈V

∫
p(x, q, ξ1)

[√
h(ξ1, ξ

x,q

2 ) −√
h(ξ)

]2
ν2,�

ρ,p(dξ),

and,

I �
0,0(h) =

∑

v∈V

∫ [∑

|z|=1

1

2
+ 1

N
p(z, v)

][√
h(ξ

0,−,v
1 , ξ

0,+,v
2 ) −√

h(ξ)
]2

ν2,�
ρ,p(dξ)

+
∑

v∈V

∫
p(0, q, ξ1)

[√
h(ξ

0,q

1 , ξ2) −√
h(ξ)

]2
ν2,�

ρ,p(dξ)

+
∑

v∈V

∫ [∑

|z|=1

1

2
+ 1

N
p(z, v)

][√
h(ξ

0,+,v
1 , ξ

0,−,v
2 ) −√

h(ξ)
]2

ν2,�
ρ,p(dξ)

+
∑

v∈V

∫
p(0, q, ξ2)

[√
h(ξ1, ξ

0,q

2 ) −√
h(ξ)

]2
ν2,�

ρ,p(dξ),

where

ξ
0,±,v
i (x,w) =

{
ξi(0, v) ± 1, if x = 0 and w = v,

ξi(x,w), otherwise.
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This Dirichlet form corresponds to an interacting particle system on (V ×
�)×(V ×
�),
where particles evolve according to an exclusion process with collisions among velocities
on each coordinate and where particles from the origin of one of the coordinates at some
velocity can jump to the origin of the other at this velocity and vice-versa.

Using the same idea as for the one-block estimate, we can prove that

D�
1(f y,�) ≤ DN(f ) and D�

2(f y,�) ≤ DN(f ),

and hence,

D�
1(f y,�) + D�

2(f y,�) ≤ 2C0N
−2,

for every density f with Dirichlet form DN(f ) bounded by CNd−2. It remains to be shown
that we can also estimate the Dirichlet form I �

0,0(f y,�) by the Dirichlet form of f .
We begin by noting that

I �
0,0(h) = I

�,1
0,0 (h) + I

�,2
0,0 (h),

where,

I
�,1
0,0 (h) =

∑

v∈V

[∑

|z|=1

1

2
+ 1

N
p(z, v)

][∫ [√
h(ξ

0,−,v
1 , ξ

0,+,v
2 ) −√

h(ξ)
]2

+
[√

h(ξ
0,+,v
1 , ξ

0,−,v
2 ) −√

h(ξ)
]2

ν2,�
ρ,p(dξ)

]
,

and

I
�,2
0,0 (h) =

∑

v∈V

∫
p(0, q, ξ1)

[√
h(ξ

0,q

1 , ξ2) −√
h(ξ)

]2
ν2,�

ρ,p(dξ)

+
∑

v∈V

∫
p(0, q, ξ2)

[√
h(ξ1, ξ

0,q

2 ) −√
h(ξ)

]2
ν2,�

ρ,p(dξ).

Then, a simple calculation shows that

I
�,2
0,0 (f y,�) ≤ 2I

(c)

0 (f ),

and therefore I
�,2
0,0 (f y,�) is also of order N−2. We then have to obtain a bound for I

�,1
0,0 (f y,�).

Following the same lines used to prove that I
�,(j)
x,z (f �) ≤ I

(j)
x,z (f ) in the proof of the one

block estimate, for j = 1,2, c, we have that each density f , with respect to νN
ρ,p , I

�,1
0,0 (f y,�),

is bounded above by:

2
∑

v∈V

[∑

|z|=1

1

2
+ 1

N
p(z, v)

]∫ [√
f (η0,y,v) −

√
f (η)

]2
νN

ρ,p(dη). (4.4)

Let (xk)0≤k≤‖|y‖| be a path from the origin to y, that is, a sequence of sites such that the
first one is the origin, the last one is y and the distance between two consecutive sites is
equal to 1:

x0 = 0, x|||y|| = y and |xk+1 − xk| = 1 for every 0 ≤ k ≤ |||y||| − 1,
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||| · ||| is the sum norm:

|||(y1, . . . , yd)||| =
∑

1≤i≤d

|yi |.

Let τx1 · · · τxi
(η) be the sequence of nearest neighbor exchanges that represents the path

along x1, . . . , xi . Then, by using the telescopic sum

√
f (η0,y,v) −√

f (η) =
|||y|||−1∑

k=0

(√√√√f

(
k∏

i=1

τxi
(η)

)
−

√√√√f

(
k−1∏

i=1

τxi
(η)

))

and the Cauchy-Schwarz inequality

(|||y|||−1∑

k=0

ak

)2

≤ |||y|||
|||y|||−1∑

k=0

a2
k ,

we obtain that (4.4) is bounded by

2
∑

v∈V

[∑

|z|=1

1

2
+ 1

N
p(z, v)

]
|||y|||

|||y|||−1∑

k=0

[√√√√f

(
k∏

i=1

τxi
(η)

)
−

√√√√f

(
k−1∏

i=1

τxi
(η)

)]2

νN
ρ,p(dη)

≤ 2 · 2 · 2d |||y|||
|||y|||−1∑

k=0

I (1)
xk,xk+1

(f ).

Since f is translation invariant, for each k, I (1)
xk,xk+1

(f ) = I
(1)
xk+z,xk+1+z(f ) for all z ∈ Z

d .

Hence, I (1)
xk,xk+1

(f ) ≤ N−dDN(f ). In particular,

I
�,1
0,0 (f y,�) ≤ 2d+2|||y|||2N−dDN(f ).

Recall that y ∈ 
εN , and hence |y| ≤ 2Nε, | · | is the max norm. Then, |||y||| ≤ d|y| ≤ 2dNε.

Since the Dirichlet form is assumed to be bounded by CNd−2, we have proved that

I
�,1
0,0 (f y,�) ≤ 2d+4d2Cε2.

We have, therefore, proved that for every density f with Dirichlet form bounded by CNd−2

and for every d-dimensional integer with max norm between 2� and 2Nε,

D2,�(f y,�) ≤ C2(C,d, �)ε2.

We can now restrict ourselves to densities f such that D2,�(f y,�) ≤ C2ε
2, that vanishes as

ε ↓ 0. In particular, to conclude the proof, it is enough to show that

lim sup
�→∞

lim sup
ε→0

sup
D2,�(f )≤C2ε2

∫
|E�

1(0) − E�
2(0)|f (ξ)ν2,�

ρ,p(dξ) = 0,

this time, however, the supremum is taken over all densities with respect to ν2,�
ρ,p . The rest

of the proof follows the same lines as the ones in the one block estimate, beginning by
decomposing the Dirichlet form along the sets having fixed conserved quantities and then
applying the equivalence of ensembles. Therefore, the two block estimate is proved.
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5 Uniqueness

To conclude the proof of the hydrodynamic limit, it remains to be proven the uniquenesses
for the solutions of problems (2.4) and (2.4). The strategy we used to prove this result was
employed by Oleinik and Kruzhkov [19] and is due to Yu. A. Dubinskii.

Let ν and ω be two weak solutions to the problem (2.4), corresponding to the same
initial function ν0. Fix some j = 1, . . . , d + 1, and let Hj ∈ C1,2([0, T ] × Dd) be such that
Hj(T ,u) = 0, for all u. Then the integral identity for ν − ω holds:

∫ T

0
dt

∫

Dd

du(νj − ωj )

[
∂tHj + 1

2

∑

1≤i≤d

∂2
ui

Hj

]

+
∫ T

0
dt

∫

Dd

du
∑

v∈V

vj (gv(ν) − gv(ω))
∑

1≤i≤d

vi∂ui
Hj = 0, (5.1)

where gv(ν) = χ(θv(
(ν))), νj ,ωj and Hj are the components of ν,ω and H , respectively.
If νj = ωj , we already have what we want, thus, suppose νj �= ωj . Introducing the notation

βj
v = gv(ν) − gv(ω)

νj − ωj

,

we have that we can write (5.1) as

∫ T

0
dt

∫

Dd

du(νj − ωj )

[
∂tHj + 1

2

∑

1≤i≤d

∂2
ui

Hj +
∑

v∈V

vjβ
j
v

∑

1≤i≤d

vi∂ui
Hj

]
= 0. (5.2)

Now, let βj,m
v be a sequence of smooth functions which converge in L2([0, T ] × Dd) to βj

v ,
as m → ∞. We denote by Hm

j (t, u) the classical solution of the equation

∂tH
m
j + 1

2

∑

1≤i≤d

∂2
ui

Hm
j +

∑

v∈V

vjβ
j,m
v

∑

1≤i≤d

vi∂ui
Hm

j = �j,

Hm
j (T ,u) = 0, Hm

j (0, u) = 0,

(5.3)

where �j is a smooth function finite in [0, T ] × Dd . For more details on the solutions of
partial differential equations of the parabolic type, the reader is referred to Friedman [13],
and for details on solutions of systems of linear partial differential equations of the parabolic
type in general, the reader is referred to Ladyženskaja et al. [16].

Now, if we replace Hj in (5.2) by Hm
j and use (5.3), we obtain:

∫ T

0
dt

∫

Dd

du(νj − ωj )�j +
∫ T

0
dt

∫

Dd

du(νj − ωj )

[∑

v∈V

vj (β
j
v − βj,m

v )
∑

1≤i≤d

∂ui
Hm

j

]
= 0.

(5.4)

Finally, since we are in a compact domain and the coefficients βj,m
v are smooth, we

have that there exists an M > 0 such that |Hm
j | ≤ M . Since these coefficients converge in

L2([0, T ] × Dd), the constant M may be taken to be independent of m. Multiplying (5.3)
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by Hm
j , integrating over [0, T ] × Dd , and then integrating by parts, we have that

∫ T

0
dt

∫

Dd

du

d∑

i=1

1

2

(
∂Hm

j

∂ui

)2

=
∫ T

0
dt

∫

Dd

du

(∑

v∈V

vjβ
j,m
v Hm

j

∑

1≤i≤d

vi∂ui
Hm

j − �Hm
j

)

− 1

2

∫

Dd

du(Hm
j )2.

On applying the elementary inequality |ab| ≤ εa2 + b2/(4ε) and using that |Hm
j | ≤ M , we

obtain that
∫ T

0
dt

∫

Dd

du

d∑

i=1

1

2

(
∂Hm

j

∂ui

)2

≤ C,

where C is a constant that may depend on M and �, but not on m.
Therefore, by applying the Cauchy-Schwartz inequality and using that βj,m

v converges to
βj

v in the L2-norm, we see that the second term on the left-hand side of (5.4) tends to zero
as m tends to infinity. This implies that for every ε > 0 there exists m such that the absolute
value of the second term on the left-hand side of (5.4) is less than ε. We, then, have obtained
that

∀ε > 0 :
∣∣∣∣
∫ T

0
dt

∫

Td

du(νj − ωj )�j

∣∣∣∣ ≤ ε,

and hence, for each j = 1, . . . , d + 1, νj = ωj . Therefore ν ≡ ω.
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